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Abstract—Crowdtesting has become an effective alterna-
tive to traditional testing, especially for mobile applications.
However, crowdtesting is hard to manage in nature. Given
the complexity of mobile applications and unpredictability of
distributed crowdtesting processes, it is difficult to estimate (a)
remaining number of bugs yet to be detected or (b) required
cost to find those bugs. Experience-based decisions may result
in ineffective crowdtesting processes, e.g., there is an average
of 32% wasteful spending in current crowdtesting practices.

This paper aims at exploring automated decision support
to effectively manage crowdtesting processes. It proposes an
approach named ISENSE which applies incremental sam-
pling technique to process crowdtesting reports arriving in
chronological order, organizes them into fixed-size groups as
dynamic inputs, and predicts two test completion indicators in
an incremental manner. The two indicators are: 1) total number
of bugs predicted with Capture-ReCapture model, and 2)
required test cost for achieving certain test objectives predicted
with AutoRegressive Integrated Moving Average model. The
evaluation of ISENSE is conducted on 46,434 reports of 218
crowdtesting tasks from one of the largest crowdtesting plat-
forms in China. Its effectiveness is demonstrated through two
application studies for automating crowdtesting management
and semi-automation of task closing trade-off analysis. The
results show that ISENSE can provide managers with greater
awareness of testing progress to achieve cost-effectiveness gains
of crowdtesting. Specifically, a median of 100% bugs can be
detected with 30% saved cost based on the automated close
prediction.

Keywords-Crowdtesting; automated close prediction; test
completion; crowdtesting management;

I. INTRODUCTION

Crowdtesting is an emerging paradigm which can im-

prove the cost-effectiveness of software testing and accel-

erate its process, especially for mobile applications [1]–

[5]. It entrusts testing tasks to online crowdworkers whose

diverse testing environments, background, and skill sets

could significantly contribute to more reliable, cost-effective,

and efficient testing results [4], [5]. Crowdtesting has been

adopted by many software organizations, including but not

limited to Google, Facebook, Amazon, Microsoft [6], [7].

Specifically, Google regularly deploys crowdtesting for 14

of their major product lines [6]. A latest report by Gartner

Inc. predicts that crowdtesting will constitute 20% of all

enterprise application testing initiatives by 2018 [8].

Trade-offs such as “how much testing is enough” are

critical yet challenging project decisions in software engi-

neering [9]–[12]. Insufficient testing can lead to unsatisfy-

ing software quality, while excessive testing can result in

potential schedule delays and low cost-effectiveness. This

is especially true for crowdtesting given the complexity

of mobile applications and unpredictability of distributed

crowdtesting processes.

In practice, project managers typically plan for the close

of crowdtesting tasks solely based on their personal expe-

rience. For example, they usually employ duration-based

or participant-based condition to close crowdtesting tasks

through either a fixed period (e.g., 5 days) or a fixed

number of participant (e.g., recruiting 400 crowdworkers).

If either of the criteria is met first, the task will be auto-

matically closed. However, our investigation on real-world

crowdtesting data (Section II-C) reveals that there are large

variations in bug arrival rate of crowdtesting tasks, and

in task’s duration and consumed cost for achieving the

same quality level. It is very challenging for managers to

come up with reasonable decisions. These experience-based

decisions could result in ineffective crowdtesting process,

e.g. an average of 32% wasteful spending in our experi-

mental crowdtesting platform (Section II-C). Furthermore,

crowdtesting is typically treated as a black box process and

managers’ decisions remain insensitive to its actual progress.

This suggests the practical need and potential opportunity to

improve current crowdtesting practices.

This paper aims at exploring automated decision support

to raise completion awareness w.r.t. crowdtesting processes,

and manage crowdtesting practices more effectively. Particu-

larly, we leverage dynamical bug arrival data associated with

crowdtesting reports, and investigate whether it is possible to

determine that, at certain point of time, a task has obtained

satisfactory bug detection level.

The proposed completion-aware crowdtesting manage-

ment approach ISENSE1 applies incremental sampling tech-

1ISENSE is named considering it is like a sensor in crowdtesting
processes to raise the awareness of the testing progress.
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(a) Bug detection speed
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Figure 1: Observations on real-world crowdtesting data

nique to process crowdtesting reports arriving in chronolog-

ical order, organizes them into fixed-size groups as dynamic

inputs, and integrates Capture-ReCapture (CRC) model and

Autoregressive Integrated Moving Average (ARIMA) model

to raise awareness of crowdtesting progress. CRC model

is widely applied to estimate the total population based

on the overlap generated by multiple captures [13]–[16].

ARIMA model is commonly used to model time series

data to forecast the future trend [17]–[20]. ISENSE predicts

two test completion indicators in an incremental manner,

including: 1) total number of bugs predicted with CRC

model, and 2) required test cost for achieving certain test

objectives predicted with ARIMA model.

ISENSE is evaluated using 218 tasks from one of the

largest Chinese crowdtesting platforms. Results show that,

the MRE of prediction (on total bugs, and required cost) are

both below 6%, with about 10% standard deviation.

We further demonstrate its effectiveness through two

typical decision scenarios, one for automating task closing

decision, and the other for semi-automation of task closing

trade-off analysis. The results show that decision automation

using ISENSE will provide managers with greater oppor-

tunities to achieve cost-effectiveness gains of crowdtesting.

Specifically, a median of 100% bugs can be detected with

30% saved cost based on the automated close prediction.

The contributions of this paper are as follows:

• Empirical observations on crowdtesting bug arrival pat-

terns based on industrial dataset, which has motivated

this study and can motivate future studies.

• Integration of incremental sampling technique to model

crowdtesting bug arrival data.

• Development of CRC-based model for predicting total

number of bugs, and ARIMA-based model for predict-

ing required cost for achieving certain test objectives.

• ISENSE approach for automated decision support in

crowdtesting management, including automating task

closing decision, and semi-automation of task closing

trade-off analysis.

• Evaluation of ISENSE on 46,434 reports of 218

crowdtesting tasks from one of the largest crowdtesting

platforms in China, and results are promising.

II. BACKGROUND AND MOTIVATION

A. Background

In general crowdtesting practice, managers prepare the

crowtesting task (including the software under test and test

requirements), and distribute it on certain online crowdtest-

ing platform. Crowdworkers can sign in their interested tasks

and submit crowdtesting reports, typically summarizing test

input, test steps, test results, etc. Managers usually set up

either a fixed period (e.g., 5 days) or a fixed number of

participant (e.g., recruiting 400 crowd workers) for the close

criteria of crowdtesting task. If either of the criteria is met

first, then the task will be automatically closed. There are

different payout schema in crowdtesting, e.g., pay by report

(see Section VI-C for details). Generally, the cost of a task

is positively correlated with the number of received reports,

thus with the close time.

The crowdtesting platform receives and manages

crowdtesting reports submitted by the crowdworkers.

Project managers then inspect and verify each report for

their tasks manually or using automatic tool support (e.g.,

[21], [22] for report labeling). Generally, each report will

be characterized using two attributes: 1) whether it contains

a valid bug2; 2) if yes, whether it is a duplicate bug that has

been previously reported in other reports. In the following

paper, if not specified, when we say “bug” or “unique bug”,

we mean the corresponding report contains a bug and the

bug is not the duplicate of previously submitted ones.

B. Baidu CrowdTest DataSet

Our experimental dataset is collected from Baidu3

crowdtesting platform, which is one of the largest platforms

in China. The dataset contains all tasks completed between

May. 1st 2017 and Jul. 1st 2017. In total, there are 218

mobile application testing tasks from various domains4,

with 46434 submitted reports. The minimum, average, and

maximum number of crowdtesting reports (and unique bugs)

per task are 101 (8), 175 (23), and 798 (99), respectively.

2In our experimental platform, a report corresponds to either 0 or 1 bug,
and there is no report containing more than 1 bug.

3test.baidu.com
4Details of dataset are in https://github.com/wangjunjieISCAS/CM
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C. Observations From A Pilot Study
To understand the bug arrival patterns of crowdtesting,

we conduct a pilot study to analyze three metrics, i.e. bug
detection speed, bug detection cost, and bug detection rate.

For each task, we first identify the time when K% bugs

was detected, where K is ranged from 10 to 100. Then,

the bug detection speed for a task can be derived using

the duration (hours) between its open time and the time

it receives K% bugs. The bug detection cost can be derived

using the number of submitted reports by reaching K% bugs.
To examine bug detection rate, we break the crowdtesting

reports for each task into 10 equal-sized groups, in chrono-

logical order. The rate for each group is derived using the

ratio between the number of unique bugs and the number

of reports. In addition, for each crowdtesting task, we also

examine the percentage of accumulated bugs (denoted as bug

arrival curve) for the previous X reports, where X ranges

from 1 to the total number of reports.
The following bug arrival patterns are observed:
1) Large Variation in Bug Detection Speed and Cost:

Figure 1a and 1b demonstrates the distribution of bug

detection speed and cost for all tasks. In general, there is

large variation in bug detection speed and cost. Specifically,

to achieve the same K% bugs, there is large variation in

both metrics. This is particularly true for a larger K%. For

example, when detecting 90% bugs, the bug detection cost

ranges from 3 to 149 hours, and from 27 to 435 reports.
2) Decreasing Bug Detection Rates Over Time: Figure

1c shows the bug detection rate of the 10 break-down

groups across all tasks. We can see that the bug detection

rate decreases sharply during the crowdtesting process. This

signifies that the cost-effectiveness of crowdtesting is dra-

matically decreasing for the later part of the process.
3) Plateau Effect of Bug Arrival Curve: Figure 2 shows

typical bug arrival curves for four crowdtesting tasks. While

they differ, somewhat, note that they all exhibit the same

“plateau effect”, after which (i.e., red point in Figure 2) new

reports find no new bugs.

Figure 2: Observations on real-world
crowdtesting data - Bug arrival curve

We assume

the cost spent

on these reports

after the red

point are wasteful

spending. In the

218 experimental

tasks, there is

an average of

32% wasteful

spending. The

plateau effect

together with the large amount of wasteful spending

further suggest the potential opportunity and practical need

for introducing early closing mechanism (based on the

recognition of that plateau) to increase cost-effectiveness.

s

Figure 3: Overview of ISENSE

4) Needs of Automated Decision Support: In addition,

an unstructured interview was conducted with the managers

of Baidu, with findings shown below.

Project managers commented the black-box nature of

crowdtesting process. While receiving constantly arriving

reports, they are often clueless about the latent bugs, or

the required cost to find them. Due to lack of situation

awareness, the management of crowdtesting is conducted

as a guesswork. This frequently results in many blind deci-

sions in task planning and management. Besides, managers

typically need to handle large number of crowdtesting tasks

simultaneously, which is very labor intensive and error-prone

in manual planning and management.

In Summary, because there is large variation in bug

arrival speed and cost (Section II-C1), current decision

making is largely done by guesswork. This results in low

cost-effectiveness of crowdtesting (Section II-C2 and II-C3).

A more effective alternative to manage crowdtesting would

be to dynamically monitor the crowdtesting process and

provide actionable decision support for task closing to save

unnecessary cost wasting on later arriving reports. Besides,

current practice suggests a practical need to empower man-

agers with greater visibility into the crowdtesting processes

(Section II-C4), and ideally raise their awareness about task

progress, thus facilitate their decision making.

III. APPROACH

Figure 3 presents an overview of ISENSE. It consists

of three main steps. First, ISENSE adopts an incremental

sampling process to model crowdtesting reports. During

the process, ISENSE converts the raw crowdtesting reports

arrived chronologically into groups and generates a bug
arrival lookup table to characterize the bug arrival informa-

tion. Then, ISENSE integrates two models, i.e. CRC and

ARIMA, to predict the total number of bugs contained in

the software, and the required cost for achieving certain test

objectives, respectively. Finally, ISENSE applies such esti-

mates to support two typical crowdtesting decision scenarios,

i.e., automating task closing decision, and semi-automation

of task closing trade-off analysis. We will present each of

the above steps in more details.
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A. Preprocess Data With Incremental Sampling Technique

Incremental sampling technique [23] is a composite sam-

pling and processing protocol. Its objective is to obtain a

single sample for analysis that has an analytic concentration

representative of the decision unit. It improves the reliability

and defensibility of sampling data by reducing variability

when compared to conventional discrete sampling strategies.

Considering the submitted crowdtesting reports of chrono-

logical order (Section II-A), when smpSize (smpSize is an

input parameter) reports are received, ISENSE treats it

as a representative group to reflect the multiple parallel

crowdtesting sessions. Remember in Section II-A, we men-

tioned that, each report is characterized as: 1) whether it

contains a bug; 2) whether it is duplicate of previously

submitted reports; if no, it is marked with a new tag;

if yes, it is marked with the same tag as the duplicates.

During the crowdtesting process, we dynamically maintain

a two-dimensional bug arrival lookup table to record these

information.

Table I: Example of bug arrival lookup table

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 ...

Sample #1 1 1 1 0 0 0 0 0 0 0 0 0

Sample #2 0 0 1 1 0 0 0 0 0 0 0 0

Sample #3 0 0 1 0 1 0 0 0 0 0 0 0

Sample #4 0 0 0 1 1 1 1 1 0 0 0 0

Sample #5 0 0 1 1 0 0 0 1 1 1 1 0

Sample #6 1 0 1 0 1 0 0 0 0 0 0 1

Sample #7 ...

Table I provides an illustrative example. After each sample

is received, we first add a new row (suppose it is row i) in

the lookup table. We then go through each report contained

in this sample. For the reports not containing a bug, we

ignore it. Otherwise, if it is marked with the same tag as

existing unique bugs (suppose it is column j), record 1 in

row i column j. If it is marked with a new tag, add a new

column in the lookup table (suppose it is column k), and

record 1 in row i column k. For the empty cells in row i,
fill it with 0.

B. Predict Total Bugs Using CRC

1) Background about CRC: The CRC (Capture-

ReCapture) model was firstly used to estimate the size

of an animal population in biology [24]–[27]. In doing

so, animals are captured, marked and released on several

trapping occasions. The number of marked animals that are

recaptured allows one to estimate the total population size

based on the samples overlap. It has also been applied in

software inspections to estimate the total number of bugs

[13]–[16]. Existing CRC models can be categorized into four

types according to bug detection probability (i.e. identical

vs. different) and crowdworker’s detection capability (i.e.

identical vs. different), as shown in Table II.

Model M0 supposes all different bugs and crowdworkers

have the same detection probability. Model Mh supposes

that the bugs have different probabilities of being detected.

Model Mt supposes that the crowdworkers have different de-

tection capabilities. Model Mth supposes different detection

probabilities for different bugs and crowdworkers.

Table II: Capture-ReCapture models

Crowdworker’s detection capability
Identical Different

Bug detection Identical M0 (M0) Mt (MtCH)
probability Different Mh (MhJK, MhCH) Mth (Mth)

Based on the four basic CRC models, various estimators

were developed. According to a recent systematic review

[14], MhJK [25], MhCH [26], MtCH [27] are the three

most frequently investigated and most effective estimators

in software engineering. Apart from that, we investigate

another two estimators (i.e., M0 [24] and Mth [28]) to ensure

all four basic models are investigated.

2) How to Use in ISENSE: ISENSE treats each sample

as a capture (or recapture). At the end of each capture, after

updating the bug arrival lookup table, ISENSE predicts

the total number of bugs in the software5 based on current

lookup table. We only demonstrate how it works with Mth
estimator due to space limit. For other four estimators, one

can obtain the estimated bugs in a similar way6.

Mth estimator predicts the total number of bugs based on

Equation 1, 2 [28]. Table III shows the meaning of each

variable, how to compute its value based on the bug arrival

lookup table in Table I.

N =
D

C
+

f1

C
γ2, C = 1− f1

∑t
k=1 kfk

(1)

γ2 = max{
D
C

∑
k k(k − 1)fk

2
∑∑

j<k njnk
− 1, 0} (2)

Table III: Variables meaning and computation

Var. Meaning Computation based on bug
arrival lookup table

Example
value

N Predicted total number
of bugs

predicted
value: 24

D Actual number of bugs
captured so far

Number of columns 12

t Number of captures Number of rows 6

nj Number of bugs de-
tected in each capture

Number of cells with 1 in row
j

3, 2, 2, 5,
6, 4

fk Number of bugs cap-
tured exactly k times
in all captures, i.e.,∑

fi = D

Count the number of cells
with 1 in each column, and
denote as ri; fk is the num-
ber of ri with value k

1=7, 2=2,
3=2, 5=1

C. Predict Required Cost Using ARIMA

1) Background about ARIMA: ARIMA (Autoregressive

Integrated Moving Average) model is commonly used to

model time series data to forecast the future values [17]–

[20]. It extends ARMA (Autoregressive Moving Average)

model by allowing for non-stationary time series to be

modeled, i.e., a time series whose statistical properties such

as mean, variance, etc. are not constant over time.

5To be precise, what we predict is the total number of potential bugs
that are uncovered by crowdtesting.

6Refer to https://github.com/wangjunjieISCAS/CM for more details.
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A time series is said to be autoregressive moving average

(ARMA) in nature with parameters (p, q), if it takes the

following form:

yt =

p∑

i=1

φiyt−i +

q∑

i=1

θiεt−i + εt (3)

Where yt is the current stationary observation, yt−i for

i = 1, ..., p are the past stationary observations, εt is the

current error, and εt−i for i = 1, ..., q are the past errors.

If this original time series {zt} is non-stationary, then d
differences can be done to transform it into a stationary one

{yt}. These differences can be viewed as a transformation

denoted by yt = �dzt, where �d = (1 − B)d where B
is known as a backshift operator. When this differencing

operation is performed, it converts an ARMA model into an

ARIMA model with parameters (p, q, d).
2) How to Use in ISENSE: Figure 4 demonstrates how

ARIMA is applied in predicting future trend of bug arrival.

We treat the reports of each sample as a window, and obtain

the number of unique bugs submitted in each sample from

the bug arrival lookup table (i.e., number of cells in the row

whose value is 1 and the corresponding column does not

have other 1). Then we use the former trainSize windows to

fit the ARIMA model and predict the number of bugs for

the later predictSize windows. When new window is formed

with the newly-arrived reports, we move the window by 1

and obtain the newly predicted results.

Figure 4: Illustrative example of ARIMA

Suppose one want to know how much extra cost is

required for achieving certain test objective (i.e., X% bugs).

As we already know the predicted total number of bugs

(Section III-B), we can figure out how many bugs should be

detected in order to meet the test objective; suppose it is Y
bugs. Based on the prediction of ARIMA, we then obtain

when the number of Y bugs can be received, suppose it needs

extra Ki reports. In this way, we assume Ki is the required

cost for meeting the test objective.

D. Apply ISENSE to Two Decision Scenarios
To demonstrate the usefulness of ISENSE, we generalize

two typical decision scenarios in crowdtesting management,

and illustrate its application to each scenario.
1) Automating Task Closing Decision: The first scenario

that can benefit from the prediction of total bugs of ISENSE

(Section III-B) is decision automation of dynamic task

closing.
As soon as a crowdtesting task begins, ISENSE can be

applied to monitor the actual bug arrival, constantly update

the bug arrival lookup table, as well as keep tracking of the

percentage of bugs detected (i.e., the ratio of the number of

submitted bugs so far over the predicted total bugs).
In such scenario, different task close criteria can be

customized in ISENSE so that it automatically closes the

task when the specified criterion is met. For instance, a

simple criterion would be to close the task when 100% bugs

have been detected in submitted reports. Under this criterion,

when ISENSE monitors 100% bugs have received and the

prediction remains unchanged for successive two captures, it

determines the time, when the last report was received, as the

close time; and would automatically close the crowdtesting

task at run time. Note that the restriction of two successive

captures is to ensure the stability of the prediction.
ISENSE supports flexible customization of the close cri-

teria. As an example, a task manager can set to close his/her

tasks when 80% bugs have been detected. Consequently,

ISENSE will help to monitor and close the task by reacting

to these customized close criteria.
2) Semi-Automation of Task Closing Trade-off Analysis:

The second scenario that benefits from the prediction of

required cost of ISENSE (Section III-C) is decision support

of task closing trade-off analysis.
For example, suppose 90% bugs have been reported at

certain time, ISENSE can simultaneously reveal the esti-

mated required cost for detecting an additional X% bugs

(i.e., 5%), in order to achieve a higher bug detection level.

Such cost-benefit related insights can provide managers with

more confidence in making informed, actionable decision on

whether to close immediately, if the required cost is too high

to be worthwhile for additional X% detected bugs; or wait a

little longer, if the required cost is acceptable and additional

X% detected bugs is desired.

IV. EXPERIMENT DESIGN

A. Research Questions
Four research questions are formulated to investigate the

performance of the proposed ISENSE.
The first two research questions are centered around accu-

racy evaluation of the prediction of total bugs and required

cost. Presumably, to support practical decision making, these

underlying predictions should achieve high accuracy.

• RQ1: To what degree can ISENSE accurately predict

total bugs?

• RQ2: To what degree can ISENSE accurately predict

required cost to achieve certain test objectives?

The next two research questions are focused on investigat-

ing the effectiveness of applying ISENSE in the two typical

scenarios (Section III-D), in which ISENSE is expected

to facilitate current practices through automated and semi-

automated decision support in managing crowdtesting tasks.

• RQ3: To what extent can ISENSE help increase the

effectiveness of crowdtesting through decision automa-

tion?
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• RQ4: How ISENSE can be applied to facilitate the

trade-off decisions about cost-effectiveness?

B. Evaluation Metrics

We measure the accuracy of prediction based on Mag-

nitude of Relative Error, a.k.a. MRE, which is the most

commonly-used measure for accuracy [29], [30]. It measures

the relative error ratio between the actual value and predicted

value, expressed as follows:

MRE =
|actual value − predicted value|

actual value
(4)

It is applied in the prediction of total number of bugs

(Section V-A) and required cost (Section V-B). Note that,

although MRE has been argued as not the best metric for

some applications as effort estimation [31], it is the most

popular and widely-used metric [29], [30], so we use it in

this work.

We measure the cost-effectiveness of close prediction

(Section V-C) based on two metrics, i.e. bug detection level

(i.e. %bug) and cost reduction (i.e. %reducedCost).

%bug is the percentage of bugs detected by the predicted

close time. We treat the number of historical detected bugs

as the total number. The larger %bug, the better.

%reducedCost is the percentage of saved cost by the

predicted close time. To derive this metric, we first obtain

the percentage of reports submitted at the close time, in

which we treat the number of historical submitted reports

as the total number. We suppose this is the percentage of

consumed cost and %reducedCost is derived using 1 minus

the percentage of consumed cost. The larger %reducedCost,
the better.

Intuitively, an increase in %bug would be accompanied

with a decrease in %reducedCost. Motivated by the F1 (or

F-Measure) in prediction approaches of software engineering

[21], [22], [32], we further derive an analogous metric F1,

to measure the harmonic mean of %bug and %reducedCost

as follows:

F1 =
2×%bug ×%reducedCost

%bug +%reducedCost
(5)

To further demonstrate the superiority of our proposed

approach, we perform one-tailed Mann Whitney U test be-

tween our proposed ISENSE and baselines (Section IV-D).

We include the Bonferroni correction to counteract the

impact of multiple hypothesis tests. Besides the p-value for

signifying the significance of the test, we also present the

Cliff’s delta to demonstrate the effect size of the test. We

use the commonly-used criteria to interpret the effectiveness

levels, i.e., Large (0.474-1.0), Median (0.33-0.474), Small
(0.147-0.33), Negligible (-1, 0.147) (see details in [33]).

C. Experimental Setup

For RQ1, we set up 19 checkpoints in the range of

receiving 10% to 100% reports, with an increment interval of

5% in between. At each checkpoint, we obtain the estimated

total number of bugs at that time (see Section III-B). Based

on the ground truth of actual total bugs, we then figure out

MRE (Section IV-B) in predicting total bugs for each task.

For RQ2, we also set 19 checkpoints. Different from

RQ1, the checkpoints of RQ2 is based on the percentage

of detected bugs, i.e. from 10% bugs to 100% bugs with an

increment of 5% in between. At each checkpoint, we predict

the required test cost (Section III-C) to achieve an additional

5% bugs, i.e. target corresponding to the next checkpoint.

For example, at checkpoint when 80% bugs have detected,

we predict the required cost for achieving 85% bugs. Based

on the ground truth of actual required cost, we then figure

out MRE (Section IV-B) in predicting required cost.

For RQ3, we analyze the effectiveness of task closing

automation with respect to five sample close criteria, i.e.,

close the task when 80%, 85%, 90%, 95%, or 100% bugs

have detected, respectively. The reason why we choose these

criteria is that we assume it is almost meaningless to close

a task when less than 80% bugs being detected.

For RQ4, we use several illustrative cases from experi-

mental projects to show how ISENSE can help trade-off

decisions.

For all these experiments, we employ a commonly-used

longitudinal data setup [21]. In detail, all the 218 tasks are

sorted in the chronological order, and we use the former N-

1 tasks as training set to tune the parameter (see details in

Section IV-E) and use the N th task as testing set to evaluate

the performance of ISENSE. We experiment N from 19 to

218 to ensure a relative stable performance because a too

small training set would bring in bias. In this way, we obtain

the performance of 200 test tasks.

D. Baselines

we compare ISENSE with two baselines.

Rayleigh: This baseline is adopted from one of the most

classical models for predicting the dynamic defect arrival

in software measurement. Generally, it supposes the defect

arrival data following the Rayleigh probability distribution

[34]. In this experiment, we implement code to fit specific

Rayleigh curve (i.e. the derived Rayleigh model) based on

each task’s bug arrival data, then predict the total bugs and

required cost for certain test objectives (with the future bug

trend) using the derived Rayleigh model.

Naive: This baseline is designed to employ naive empiri-

cal results, i.e. the median value of the dataset. Specifically,

for the prediction of total bugs, it uses the median total bugs

calculated based on the tasks of training set. For required

cost, it uses the median required cost from training set, in

terms of the corresponding checkpoint (Section IV-C).

E. Parameter Tuning

For each CRC estimator, the input parameter is smpSize,

which represents how many reports are considered in each
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Figure 5: MRE of predicted total bugs of Mth (RQ1)

capture. We tune the optimal parameter value based on the

training set (see Section IV-C) and apply it in the testing set

to evaluate the performance. In detail, for every candidate

parameter value (we experiment from 1 to 50) and for each

checkpoint, we obtain the MRE for the prediction of total

bugs for each task in the training set. We then calculate the

median of these MRE values, and sum the median across all

checkpoints for each candidate parameter value. We treat the

parameter value, under which the smallest sum is obtained,

as the best one. For ARIMA model, we use the same method

for deciding the best parameter value.

V. RESULTS AND ANALYSIS

A. Answers to RQ1 : Accuracy of Total Bugs Prediction

Table IV demonstrates the median and standard deviation

for the MRE of predicted total bugs for all five CRC

estimators. The columns correspond to different checkpoints,

and the best two performer under each checkpoint are

highlighted (in italic font and red color). We additionally

present the detailed performance for Mth (the best estimator)

in Figure 57.

From Table IV and Figure 5, we can see that, the predicted

total number of bugs becomes more close to the actual total

number of bugs (i.e., MRE decreases) towards the end of

the tasks. Among the five estimators, M0 and Mth have the

smallest median MRE for most checkpoints. But the variance

of M0 is much larger than that of Mth. Hence, estimator Mth
is more preferred because of its relatively higher stability

and accurate prediction in total number of bugs. In the

following experiments, if not specially mentioned, the results

are referring to those generated from ISENSE with Mth
estimator.

Comparison With Baselines: Table V compares the pre-

diction accuracy of ISENSE and the two baselines, in terms

of the median and standard deviation of MRE. Table VI

summarizes the results of Mann-Whitney U Test for the

MRE of predicted total bugs between each two methods.

7Detailed performance of other four estimators are in https://github.com/
wangjunjieISCAS/CM

It shows that ISENSE significantly (p-value <0.05) and

substantially (Cliff’s delta is large) outperforms the two

baselines, especially during the later stage (i.e. after the 40%

checkpoint) of the crowdtesting tasks.

Answers to RQ1: ISENSE with the best estimator Mth
is accurate in predicting the total bugs in crowdtesting, and

significantly outperforms the two baselines. Specifically, the

median of predicted total bugs is nearly equal with the

ground truth (i.e., MRE <0.06) with a standard deviation

of less than 10% during the latter half of the process.

B. Answers to RQ2 : Accuracy of Required Cost Prediction

Table VII summarizes the comparison of median and stan-

dard deviation of the MRE of predicted required cost across

ISENSE and the two baselines, with columns corresponding

to different checkpoints. We highlight the methods with the

best performance under each checkpoint. Table VIII presents

the results of Mann-Whitney U Test between each pair.

As indicated by the decreasing median MRE in Table VII,

the prediction of required cost becomes increasingly accurate

for later checkpoints. For example, after 50% checkpoint, the

median MRE of predicted cost is lower than 6%, with about

13% standard deviation. This implies that ISENSE can

effectively predict the required cost to target test objectives.

Comparison With Baselines: We can see that the median

and standard deviation of MRE for two baselines are worse

than ISENSE during the second half of the task process. Ob-

served from Table VIII, the difference between the proposed

ISENSE and two baselines is significant (p-value <0.05)

and substantial (Cliff’s delta is not negligible) during the

second half of crowdtesting process. This further signifies

the advantages of the proposed ISENSE.

Answers to RQ2: ISENSE can predict the required test

cost within averagely 6% MRE for later stage of crowdtest-

ing.

C. Answers to RQ3: Task Closing Automation

Figure 6 shows the distribution of %bug, %reducedCost,
and F1 for five customized close criteria.

Let us first look at the last series of three boxes in

Figure 6, which reflects a close criterion of 100% bugs

being detected (i.e., most commonly-used setup). The results

indicate that a median of 100% bugs can be detected with

30% median cost reduction. This suggests an additional

30% more cost-effectiveness for managers if equipped with

such a decision automation tool as ISENSE to monitor and

close tasks automatically at run-time. The reduced cost is

a tremendous figure when considering the large number of

tasks delivered in a crowdtesting platform. In addition, the

standard deviation is relatively low, further signifying the

stability of ISENSE.

We then shift our focus on other four customized close

criteria (i.e., 80%, 85%, 90%, and 95% in terms of per-

centage of detected bugs). We can observe that for each
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Table IV: Statistics for MRE of predicted total bugs (RQ1)

10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%
Median

M0 0.35 0.25 0.28 0.21 0.16 0.14 0.09 0.07 0.07 0.05 0.04 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00
MtCH 0.41 0.32 0.28 0.18 0.14 0.13 0.09 0.08 0.08 0.06 0.05 0.04 0.03 0.03 0.03 0.00 0.00 0.00 0.00
MhCH 0.38 0.25 0.24 0.22 0.19 0.13 0.12 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.01 0.00 0.00 0.00 0.00
MhJK 0.08 0.08 0.08 0.09 0.08 0.09 0.08 0.09 0.11 0.10 0.09 0.09 0.10 0.10 0.08 0.07 0.06 0.05 0.04

Mth 0.32 0.28 0.22 0.18 0.16 0.12 0.09 0.08 0.06 0.05 0.05 0.04 0.03 0.01 0.00 0.00 0.00 0.00 0.00
Standard deviation

M0 0.33 0.35 0.33 0.33 0.33 0.32 0.31 0.30 0.27 0.24 0.21 0.17 0.17 0.16 0.12 0.10 0.06 0.07 0.04
MtCH 0.33 0.32 0.31 0.30 0.30 0.27 0.24 0.19 0.16 0.11 0.13 0.09 0.10 0.09 0.09 0.09 0.09 0.09 0.05

MhCH 0.30 0.33 0.30 0.28 0.29 0.25 0.23 0.19 0.15 0.20 0.20 0.17 0.15 0.15 0.17 0.15 0.17 0.17 0.10

MhJK 0.14 0.14 0.14 0.13 0.13 0.12 0.12 0.11 0.11 0.12 0.12 0.12 0.12 0.13 0.13 0.12 0.12 0.10 0.07

Mth 0.27 0.27 0.28 0.27 0.26 0.23 0.19 0.15 0.10 0.09 0.08 0.07 0.06 0.06 0.06 0.05 0.05 0.03 0.03

Table V: Comparison with baselines in MRE of predicted total bugs (RQ1)

10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%
Median

ISENSE 0.32 0.28 0.22 0.18 0.16 0.12 0.09 0.08 0.06 0.05 0.05 0.04 0.03 0.01 0.00 0.00 0.00 0.00 0.00
Rayleigh 0.50 0.43 0.35 0.28 0.27 0.27 0.27 0.27 0.26 0.27 0.27 0.27 0.28 0.28 0.28 0.28 0.27 0.17 0.16

Naive 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.16

Standard deviation
ISENSE 0.27 0.27 0.28 0.27 0.26 0.23 0.19 0.15 0.10 0.09 0.08 0.07 0.06 0.06 0.06 0.05 0.05 0.03 0.03
Rayleigh 0.23 0.26 0.25 0.23 0.22 0.21 0.24 0.26 0.28 0.40 0.40 0.51 0.54 0.58 0.58 0.55 0.41 0.39 0.29

Naive 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.20

Table VI: Results of Mann-Whitney U Test for MRE of predicted total bugs (RQ1)

10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%
ISENSE vs.
Rayleigh

0.00
0.46

0.00
0.31

0.00
0.26

0.00
0.15

0.00
0.25

0.00
0.38

0.00
0.49

0.00
0.55

0.00
0.64

0.00
0.69

0.00
0.70

0.00
0.77

0.00
0.81

0.00
0.84

0.00
0.86

0.00
0.86

0.00
0.86

0.00
0.85

0.00
0.85

ISENSE vs.
Naive

0.86
-0.0

0.47
0.00

0.02
0.11

0.00
0.17

0.00
0.28

0.00
0.40

0.00
0.50

0.00
0.57

0.00
0.66

0.00
0.72

0.00
0.73

0.00
0.78

0.00
0.82

0.00
0.84

0.00
0.87

0.00
0.89

0.00
0.90

0.00
0.89

0.00
0.79

Rayleigh vs.
Naive

1.0
-0.5

0.99
-0.2

0.99
-0.1

0.29
0.03

0.19
0.05

0.18
0.05

0.18
0.05

0.07
0.08

0.05
0.09

0.10
0.07

0.13
0.06

0.33
0.02

0.36
0.01

0.53
-0.0

0.53
-0.0

0.42
0.01

0.16
0.05

0.00
0.15

0.51
-0.0

Note that: The upper figure within a cell is p-value, and the lower figure is Cliff’s delta. Background denotes the effect size of Large , Median , Small , and Negligible .

Table VII: Statistics and comparison with baselines for MRE of predicted required cost (RQ2)

10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%
Median

ISENSE 0.33 0.25 0.15 0.13 0.13 0.10 0.08 0.06 0.07 0.06 0.04 0.03 0.04 0.04 0.05 0.04 0.05 0.06 0.06
Rayleigh 1.01 0.66 0.37 0.33 0.25 0.18 0.14 0.11 0.12 0.10 0.08 0.07 0.08 0.08 0.07 0.08 0.10 0.17 0.14

Empirical 0.33 0.40 0.15 0.13 0.17 0.18 0.10 0.11 0.12 0.13 0.09 0.10 0.10 0.10 0.12 0.12 0.15 0.16 0.18

Standard deviation
ISENSE 0.79 0.57 0.36 0.48 0.26 0.24 0.20 0.22 0.12 0.13 0.13 0.12 0.11 0.13 0.13 0.08 0.11 0.13 0.11
Rayleigh 1.33 0.93 0.63 0.70 0.39 0.33 0.28 0.29 0.17 0.34 0.30 0.34 0.27 0.38 0.40 0.35 0.38 0.40 0.20

Naive 0.79 0.76 0.36 0.48 0.33 0.33 0.24 0.29 0.17 0.20 0.17 0.16 0.15 0.19 0.22 0.14 0.18 0.30 0.19

Table VIII: Results of Mann-Whitney U Test for MRE of predicted required cost (RQ2)

10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%
ISENSE vs.
Rayleigh

0.00
0.38

0.00
0.38

0.00
0.34

0.00
0.37

0.00
0.33

0.00
0.30

0.00
0.33

0.00
0.29

0.00
0.28

0.00
0.27

0.00
0.34

0.00
0.33

0.00
0.36

0.00
0.30

0.00
0.27

0.00
0.30

0.00
0.32

0.00
0.31

0.00
0.25

ISENSE vs.
Naive

0.50
0.0

0.00
0.19

0.50
0.0

0.50
0.0

0.00
0.16

0.00
0.30

0.00
0.18

0.00
0.29

0.00
0.28

0.00
0.45

0.00
0.41

0.00
0.48

0.00
0.45

0.00
0.38

0.00
0.46

0.00
0.43

0.00
0.40

0.00
0.36

0.00
0.49

Rayleigh vs.
Naive

0.99
-0.3

0.99
-0.2

0.99
-0.3

0.99
-0.3

0.99
-0.1

0.54
-0.0

0.99
-0.1

0.50
0.0

0.50
0.0

0.00
0.17

0.09
0.07

0.00
0.13

0.05
0.08

0.07
0.07

0.00
0.14

0.04
0.09

0.25
0.03

0.40
0.01

0.00
0.19

Note that: The upper figure within a cell is p-value, and the lower figure is Cliff’s delta. Background denotes the effect size of Large , Median , Small , and Negligible .

close criterion, the median %bug generated from ISENSE is

very close to the targeted close criterion, with small standard

deviation. Among these close criteria, 36% to 52% cost can

be saved, which further signify the effectiveness of ISENSE.

We also notice that, the median %bug is a little larger than

the customized close criterion. For example, if the project

manager hopes to close the task when 90% bugs detected,

a median of 92% bugs have submitted at the predicted

close time. This implies, in most cases, the close prediction

produced by ISENSE does not have the risk of insufficient

testing. Furthermore, we have talked with the project man-

agers and they thought, detecting slightly more bugs (even

with less reduced cost) is always better than detecting fewer

bugs (with more reduced cost). This is because %bug is more

like the constraint, while %reducedCost is only the bonus.

We also analyze the reason for this phenomenon. It

is mainly because, before suggesting close, our approach

requires the predicted total bugs remain unchanged for two

successive captures (Section III-D1). This restriction is to

alleviate the risk of insufficient testing. This is also because
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Figure 6: Task closing automation performance (RQ3)

we treat a sample of reports as the unit during the prediction,

which can also potentially result in the close time being a

little later than the customized close time.

Answers to RQ3: The automation of task closing by

ISENSE can make crowdtesting more cost-effective, i.e.,

a median of 100% bugs can be detected with 30% saved

cost.

D. Answers to RQ4: Trade-off Decision Support

Trade-off between investment and outcomes is important

for optimizing the resource allocation. To reflect such trade-

off context, we randomly pick a time and slice the experi-

mental dataset to retrieve all tasks under testing at that time,

then examine the cost-effectiveness of more testing.

Figure 7 demonstrates 4 trade-off analysis examples

across 6 tasks (i.e. P1-P6), generated from repeating the

above analysis at four different time points (i.e. correspond-

ing to time1 to time4 in a sequential order). The y-axis

denotes the next test objective to achieve, while x-axis shows

the predicted required cost to achieve that objective.

Generally speaking, in each of the four boxes, the

crowdtesting tasks to the right are less cost-effective than the

tasks to the left. For example, at time3, P6 is estimated to

require additional 14 cost to achieve 100% test objective. If

the manager is facing budget constraints or trying to improve

cost-effectiveness, he/she could choose to close P6 at time3,

because it is the least effective one among all tasks.

To facilitate such kind of trade-off analysis on which task

to close and when to close, we design two decision param-

eters as inputs from decision maker: 1) quality benchmark
which sets the minimal threshold for bug detection level, e.g.

the horizontal red lines in Figure 7; 2) cost benchmark which

sets the maximal threshold for required cost to achieve the

next objective, e.g. the vertical blue lines in Figure 7.

These two benchmarks split the tasks into four regions

at each slicing time (as indicated by the four boxes in

each subfigure of Figure 7). Each region suggests different

insights on the test sufficiency as well as cost-effectiveness

for more testing, which can be used as heuristics to guide

actionable decision-making at run time. More specifically:
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Figure 7: Decision support for trade-off analysis (RQ4)

Lower-Left (Close-Later): Tasks in this quadrant are

recommended to be closed later, and continuing testing pro-

duces low hanging fruits. For these tasks, their quality levels

are not acceptable yet, and it only requires relatively less cost

to improve quality (i.e., to achieve next test objective). This

indicates the most cost-effective options and testing should

definitely continue.

Lower-Right (Continue-Manage): Tasks in this quadrant

have not met the quality benchmark, so continue testing is

preferred even though they require significant more cost to

achieve quality objective. It also suggests that the task is

either difficult to test, or the current crowdworker participa-

tion is not sufficient. Therefore, managers are recommended

to take actions to drill down in particular tasks, and see if

more testing guidelines or worker incentives are needed.

Upper-Left (Plan-to-close): Tasks in this quadrant al-

ready meet their quality benchmark, however, it is very cost-

effectiveness for reaching next higher quality level, i.e, with

little additional cost. Managers may plan to close all these

tasks, or identify some high priority ones for further testing

and quality improvement.

Upper-Right (Close-Now): Tasks in this quadrant are

candidates for closing immediately, since they have meet

the pre-specified quality objectives and will require relatively

greater cost to reach next quality level. It is not practical to

continue testing considering the cost-effectiveness.

Note that, the two benchmarks in Figure 7 can be cus-

tomized according to practical needs.

Answers to RQ4: ISENSE provides practical insights

to help managers make trade-off analysis on which task to

close or when to close, based on two benchmark parameters

and a set of decision heuristics.

VI. DISCUSSION

A. Best CRC Estimator for Crowdtesting

In traditional software inspection or testing activities,

MhJK, MhCH, and MtCH have been recognized as the most

effective estimators for total bugs [13], [15], [16], [35]–

[38]. However, in crowdtesting, the most comprehensive

estimator Mth (see Section III-B1) outperforms the other

CRC estimators. This is reasonable because crowdtesting
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is conducted by a diversified pool of crowdworkers with

different levels of capability, experience, testing devices, and

the nature of bugs in the software under test also vary greatly

in terms of types, causes, and detection difficulty, etc. In such

cases, Mth, which assumes different detection probability

for both bugs and crowdworkers, supposes to be the most

suitable estimator for crowdtesting.

B. Necessity for More Time-Sensitive Analytics in
Crowdtesting Decision Support

As discussed earlier in the background and motiva-

tional pilot study (Section II-C), challenges associated with

crowdtesting management mainly lie in two aspects: uncer-

tainty in crowdworker’s performance and lack of visibility

into crowdtesting progress. We believe there is an increasing

need for introducing more time-sensitive analytics during

crowdtesting process to support better decision making.

ISENSE can generate time-based information reveal-

ing dynamic crowdtesting progress and provide practical

guidelines of trade-off analysis. Besides, ISENSE provides

additional visibility into the testing progress and insights for

effective task management along with the crowdtesting pro-

cess. The experimental results have proven that a significant

portion of crowdtesting cost can be saved. This is extremely

encouraging and we look forward to more discussion and

innovative decision support techniques in this direction.

C. Threats to Validity

First, this paper treats the number of crowdtesting reports

as the amount of cost when measuring the reduced cost

(Section IV-B). This is applicable for the paid by report
schema (i.e., crowdworkers who submit report can get paid)

[2], which is a commonly-used payout schema. For a second

popular schema paid by bug (i.e., crowdworkers who report
bug can get paid) [3], [39], ISENSE can also reduce the

cost by closing the task properly (i.e., fewer bug reports

means less cost). And we believe ISENSE can obtain a

comparable performance because the proportion of bugs in

the reports almost remain unchanged across the crowdtesting

process. For a third popular schema paid by first bug
(i.e., crowdworkers who report the first bug can get paid)

[4]. This schema is less sensitive to the automated task

closing decision because under this schema, the payment

to crowdworkers is constant (i.e., the submitted number of

unique bugs). However, by closing the task at proper time,

the platform can potentially reduce the cost for managing

the duplicate reports, as well as shorten the duration of

crowdtesting tasks.

Second, our designed methods are based on the report’s

attributes (i.e., whether it contains a bug; and whether it is

the duplicates of previous ones). In crowdtesting process,

each report would be inspected and triaged with these two

attributes so as to better manage the reported bugs and

facilitate bug fixing [2], [39]. This can be done manually

or using automatic tool support (e.g., [21], [22]). Therefore,

we assume our designed methods can be easily adopted in

the crowdtesting platform.

VII. RELATED WORK

Crowdtesting has been applied to facilitate many testing

tasks, e.g., test case generation [40], usability testing [41],

software performance analysis [42], software bug detection

and reproduction [43]. These studies leverage crowdtest-

ing to solve the problems in traditional testing activities,

while some other approaches focus on solving the new

encountered problems in crowdtesting. Feng et al. [44],

[45] and Jiang et al. [46] proposed approaches to prioritize

test reports in crowdtesting. Wang et al. [21], [22], [47]

proposed approaches to automatically classify crowdtesting

reports. Cui et al. [48], [49] and Xie et al. [50] proposed

crowdworker selection approaches for crowdtesting tasks.

This work focuses on the automated decision support for

crowdtesting management, which is valuable to improve the

cost-effectiveness of crowdtesting and not explored before.

Many existing approaches proposed risk-driven or value-

based analysis to prioritize or select test cases [51]–[59],

so as to improve the cost-effectiveness of testing. However,

none of them is applicable to the emerging crowdtesting

paradigm where managers typically have no control over

online crowdworkers’ dynamic behavior and uncertain per-

formance. There are also existing researches focusing on

defect prediction and effort estimation [30], [32], [60]–[62].

The core part of these approaches is the extraction of features

from the source code, or software repositories. However, in

crowdtesting, the platform can neither obtain the source code

of these apps, nor involve in the development process of

these apps. Several researches focused on studying the time

series models for measuring software reliability [12], [63]–

[68]. Among these, ARIMA is the most promising one for

modeling software failures over time [17], [18], [20]. This

paper used ARIMA in modeling the bug arrival dynamics

in crowdtesting and estimating future trend.

VIII. CONCLUSION

Motivated by the empirical observations from an indus-

try crowdtesting platform, we propose completion-aware

crowdtesting management approach ISENSE which can

raise the awareness of testing progress through two com-

pletion indicators, and be used to automate the task closing

and semi-automate trade-off decisions.
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